Theoretical Studies of Structure-Function Relationships in Kv Channels: Electrostatics of the Voltage Sensor

نویسنده

  • Alexander Peyser
چکیده

Voltage-gated ion channels mediate electrical excitability of cellular membranes. Reduced models of the voltage sensor (VS) of Kv channels produce insight into the electrostatic physics underlying the response of the highly positively charged S4 transmembrane domain to changes in membrane potential and other electrostatic parameters. By calculating the partition function computed from the electrostatic energy over translational and/or rotational degrees of freedom, I compute expectations of charge displacement, energetics, probability distributions of translation & rotation and Maxwell stress for arrangements of S4 positively charged residues and S2 & S3 negatively charged counter-charges; these computations can then be compared with experimental results to elucidate the role of various putative atomic level features of the VS. A ‘paddle’ model (Jiang et al., 2003) is rejected on electrostatic grounds, owing to unfavorable energetics, insufficient charge displacement and excessive Maxwell stress. On the other hand, a ‘sliding helix’ model (Catterall, 1986) with three local counter-charges, a protein dielectric coefficient of 4 and a 2/3 interval of counter-charge positioning relative to the S4 α-helix period of positive residues is electrostatically reasonable, comparing well with Shaker (Seoh et al., 1996). Lack of countercharges destabilizes the S4 in the membrane; counter-charge interval helps determine the number and shape of energy barriers and troughs over the range of motion of the S4; and the local dielectric coefficient of the protein (S2, S3 & S4) constrains the height of energy maxima relative to the energy troughs. These ‘sliding helix’ models compare favorably with experimental results for single & double mutant charge experiments on Shaker by Seoh et al. (1996). Single S4 positive charge mutants are predicted quite well by this model; single S2 or S3 negative counter-charge mutants are predicted less well; and double mutants for both an S4 charge and an S2 or S3 counter-charge are characterized least well by these electrostatic models (which do not include gating load, unlike their biological analogs). Further computational and experimental investigation of S2 & S3 counter-charge structure for voltage-gated ion channels is warranted. 1 ar X iv :1 11 2. 30 82 v1 [ qbi o. B M ] 1 4 D ec 2 01 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-Dependent Gating of hERG Potassium Channels

The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deacti...

متن کامل

Two Separate Interfaces between the Voltage Sensor and Pore Are Required for the Function of Voltage-Dependent K+ Channels

Voltage-dependent K(+) (Kv) channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved acros...

متن کامل

Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarizati...

متن کامل

Exploring structure-function relationships between TRP and Kv channels

The molecular mechanisms underlying the activation of Transient Receptor Potential (TRP) ion channels are poorly understood when compared to those of the voltage-activated potassium (Kv) channels. The architectural and pharmacological similarities between the members of these two families of channels suggest that their structure-function relationships may have common features. We explored this ...

متن کامل

Voltage Sensor Inactivation in Potassium Channels

In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011